Conformality Lost

M. Stephanov

U. of Illinois at Chicago

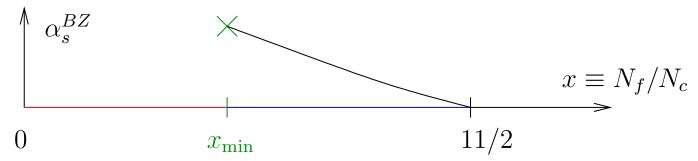
with D. Kaplan, J-W. Lee, D. Son (INT, Seattle)

Conformality

- In a conformal theory nothing is special about any distance scale.
- This is nontrivial for an interacting QFT, because couplings generally run.
- $\Lambda \frac{\partial g}{\partial \Lambda} = \beta(g)$. Thus $\beta(g_c) = 0$ in a conformal point $g = g_c$.
- Well-known example is QCD at the Banks-Zaks conformal point:

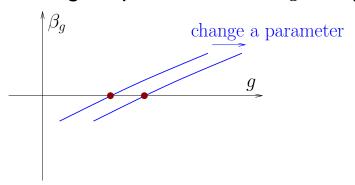
$$2\pi\beta(\alpha_s) = \beta_0\alpha_s^2 + \beta_1\alpha_s^3 + \ldots = 0$$

has a nontrivial solution $\alpha_s^{BZ} \approx -\beta_0/\beta_1$ in perturbative domain, when $\beta_0 = (11N_c - 2N_f)/3$ is small. For $N_c \to \infty$ QCD, $\alpha_s^{BZ} \to 0$, when $x \equiv N_f/N_c \to 11/2$.

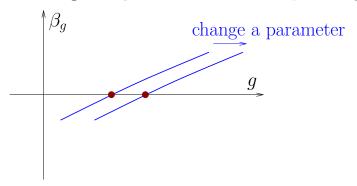


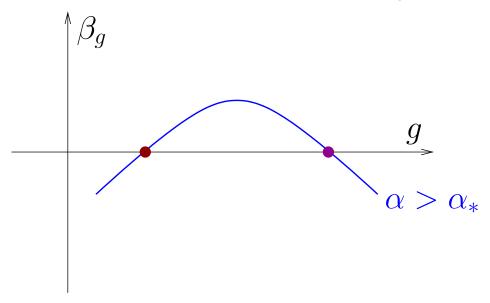
conformality lost conformal window

Change a parameter and g_c only shifts:

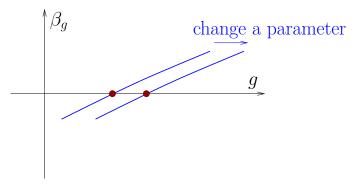


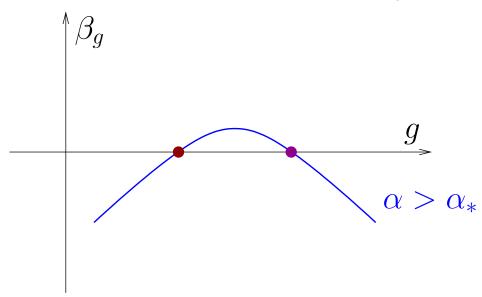
Change a parameter and g_c only shifts:



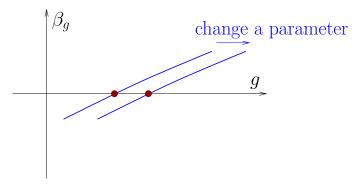


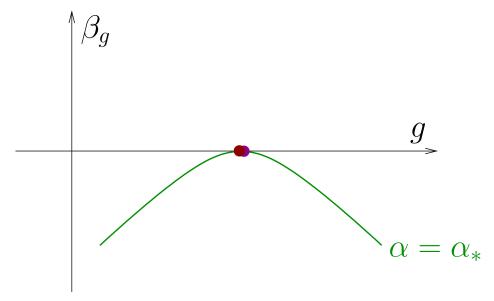
Change a parameter and g_c only shifts:



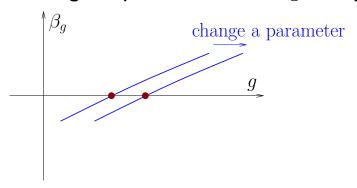


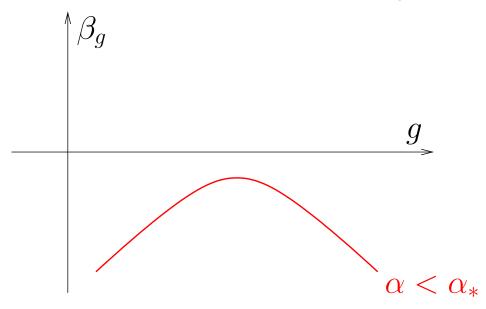
Change a parameter and g_c only shifts:



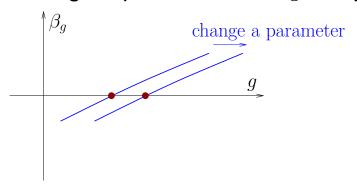


Change a parameter and g_c only shifts:

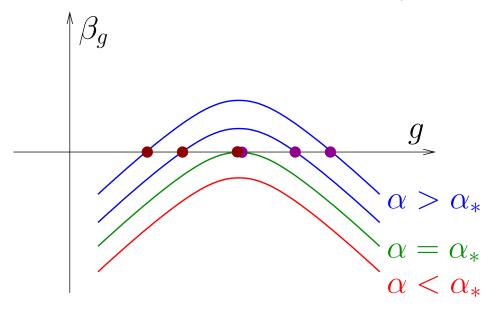




Change a parameter and g_c only shifts:



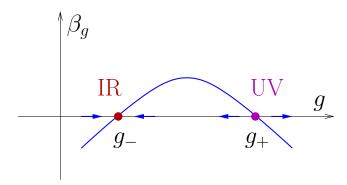
unless it collides with another fixed point:



Let us explore this mechanism of fixed point "annihilation".

RG flows and scale generation

IR-UV pair:



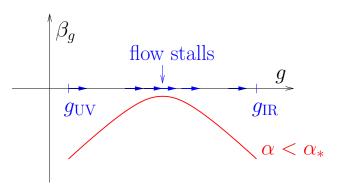
Model:

$$\beta_g = (\alpha - \alpha_*) - (g - g_*)^2 = (g - g_-)(g - g_+).$$

$$g_{\pm} = g_* \pm \sqrt{\alpha - \alpha_*}.$$

We can integrate the RG equation:

$$\frac{\Lambda_{\text{IR}}}{\Lambda_{\text{UV}}} = \exp \int_{g_{\text{UV}}}^{g_{\text{IR}}} \frac{dg}{\beta_g} \quad \xrightarrow{\alpha \to \alpha_*} \exp \left(-\frac{\pi}{\sqrt{\alpha_* - \alpha}} \right)$$



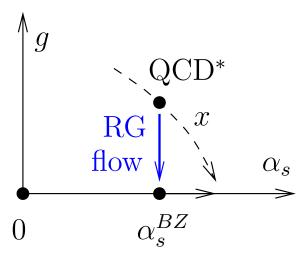
This is the well-known BKT scaling!

■ The slope $\beta'(g_-) = 2\sqrt{\alpha - \alpha_*}$ is the scaling dimension of the deformation $g - g_-$.

Near the critical point α_* this deformation (irrelvant for IR point) becomes marginal.

Examples

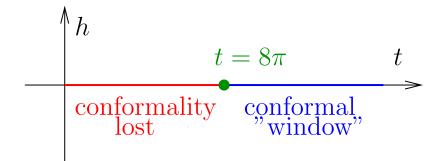
- XY model.
- $ightharpoonup \mathrm{QM}$ with $V=1/r^2$.
- Holographic model.
- QCD*?



XY model

A two-component classical spin model, which can be described by a 2d field theory:

$$\mathcal{L} = \frac{1}{t} \left[\frac{1}{2} \left(\partial_{\mu} \theta \right)^{2} - h \cos \theta \right]$$



In 2d continuous symmetry cannot be spont. broken, but transitions can and do occur.

Physics: equivalent to Coulomb gas of vortices, at dual T = 1/t.

 $E \sim \log R$ and vortices are bound in zero-vorticity pairs for small T.

But $S \sim \log R$. For large enough T, S wins over E/T and vortices inbind, screening the Coulomb potential: $\xi < \infty$.

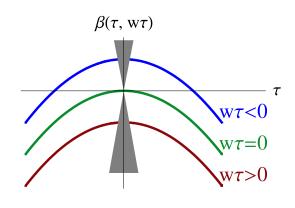
XY model: RG treatment

• In terms of $u=1-t/(8\pi)$ and $v=h/\Lambda^2$:

$$\beta_u = -2v^2, \quad \beta_v = -2uv$$

or using $\tau = u + v$, 2w = v - u:

$$\beta_{ au} = -2w au - au^2, \quad w au = {
m RG} \ {
m invariant}$$



ightharpoonup With $\alpha - \alpha_* = -2w\tau$, $\tau = g - g_*$, same as in toy RG model.

(Caveat: gray region is non-perturbative in u, v.)

$$\xi = \Lambda \exp\left(\frac{\pi}{2\sqrt{2w\tau}}\right) \sim e^{\cosh/\sqrt{t_c - t}}$$

Scaling dimension $[\cos \theta] = t/(4\pi) \to 2$ as $t \to 8\pi$, and h becomes relevant for $t < 8\pi$.

Quantum mechanics of $1/r^2$

$$i\frac{\partial \Psi}{\partial t} = \left[-\boldsymbol{\nabla}^2 + \frac{\alpha}{r^2} \right] \Psi$$

is scale invariant (naively).

• General solution for E=0 (or any E at small r):

$$\Psi = c_{-}r^{\nu_{-}} + c_{+}r^{\nu_{+}}, \quad \nu_{\pm} = -\sqrt{-\alpha_{*}} \pm \sqrt{\alpha - \alpha_{*}}, \quad \alpha_{*} = -\frac{(d-2)^{2}}{4}.$$

valid in the range $\alpha_* \leq \alpha \leq \alpha_* + 1$.

- If c_- or c_+ are zero the solution is scale invariant. Otherwise c_+/c_- is a *dimensionful* parameter.
- **●** For $r \to \infty$ solution $\psi \to c_+ r^{\nu_+}$ "IR fixed point."

Quantum mechanics and RG

 \blacksquare To make sense of b.c. at r=0, regularize:

$$V(r) = \begin{cases} \alpha/r^2, & r > r_0, \\ -g/r_0^2, & r < r_0, \end{cases}$$

Then

$$\frac{c_{+}}{c_{-}} = r_{0}^{(\nu_{-}-\nu_{+})} \frac{\gamma + \nu_{-}}{\gamma + \nu_{+}} , \qquad \gamma \equiv \left[\frac{\sqrt{g} J_{\frac{d}{2}} \left(\sqrt{g} \right)}{J_{\frac{d-2}{2}} \left(\sqrt{g} \right)} \right].$$

● The physics, i.e., c_+/c_- , is independent of r_0 if γ "runs":

$$\beta_{\gamma} = -r_0 \frac{\partial \gamma}{\partial r_0} = -(\gamma + \nu_+)(\gamma + \nu_-) = (\alpha - \alpha_*) - (\gamma - \gamma_*)^2,$$

Same as in toy RG model. $\gamma=-\nu_-$ corresponds to $c_-=0$ — IR fixed point, and $\gamma=-\nu_+$ — UV fixed point.

• For $\alpha < \alpha_*$ the ground state energy is

$$-E_0 = \frac{1}{r_0^2} \exp\left(-\frac{2\pi}{\sqrt{\alpha_* - \alpha}} + O(1)\right),\,$$

"Field-theory" treatment

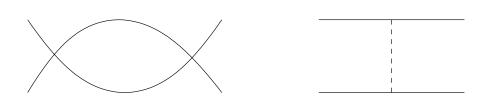
$$S = \int dt \, d^d \boldsymbol{x} \, \left(i \psi^{\dagger} \partial_t \psi - \frac{|\boldsymbol{\nabla} \psi|^2}{2} + \pi \frac{g}{4} \psi^{\dagger} \psi^{\dagger} \psi \psi \right)$$
$$- \int dt \, d^d \boldsymbol{x} \, d^d \boldsymbol{y} \psi^{\dagger}(t, \boldsymbol{x}) \psi^{\dagger}(t, \boldsymbol{y}) \frac{\alpha}{|\boldsymbol{x} - \boldsymbol{y}|^2} \psi(t, \boldsymbol{y}) \psi(t, \boldsymbol{x}),$$

Feynman rules, $\epsilon = d - 2$:

Particle propagator: $\frac{i}{\omega - p^2/2}$,

Contact vertex: $i\pi g\mu^{-\epsilon}$,

Static $1/r^2$ potential: $\frac{2\pi i\alpha}{\epsilon}\frac{1}{|{m q}|^\epsilon}$.



$$\beta_g = \epsilon g - \frac{g^2}{2} + 2\alpha = 2\left(\alpha + \frac{\epsilon^2}{4}\right) - \frac{1}{2}(g - \epsilon)^2,$$

same as before, for small ϵ .

• One can also calculate the scaling dimension of $\psi\psi$:

$$[\psi\psi]_{\rm UV/IR} = \frac{d+2}{2} \pm \sqrt{\alpha - \alpha_*}$$

Holographic dictionary (AdS/CFT)

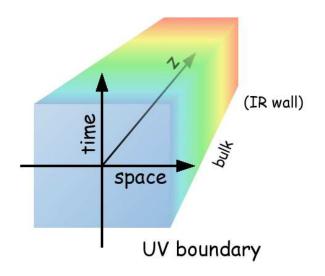
Gauge theory in 4d defines a generating functional for Green's functions:

$$Z_4[\phi_0] = \int \mathcal{D}$$
(4d fields) $\exp\{iS + i \int_{x^4} \phi_0 \mathcal{O}\}$

Dual holographic theory lives in 5d and defines an effective action functional:

$$Z_5[\phi_0] = \int_{\phi(z o 0) o \phi_0} \mathcal{D}$$
(5d fields) $\exp\{iS_5\}$

Duality means $Z_4 = Z_5$.



5d bulk metric:

$$ds^2 = z^{-2} \left(-dz^2 + \eta_{\mu\nu} dx^{\mu} dx^{\nu} \right).$$

 $\eta_{\mu\nu} = \text{diag}(+1, -1, -1, -1).$
(Note: $x^m \to \lambda x^m$).

Dimension of 4d operator and 5d mass

Consider 5d action for a bulk scalar, dual to a scalar operator O:

$$\mathcal{L}_{5} = \frac{1}{2} \sqrt{g} \left(g^{mn} \partial_{m} \phi \, \partial_{n} \phi - m_{\text{bulk}}^{2} \, \phi^{2} \right) \qquad [g_{mn}] = -2, [\phi] = [m_{\text{bulk}}] = 0$$

 $z \to 0$ (at fixed q, i.e., $qz \ll 1$) extremum satisfies

$$\partial_z(z^{-3}\partial_z\phi) - z^{-5}m_{\text{bulk}}^2\phi = 0$$

$$\phi \sim z^{\Delta_{\phi}} \quad ext{with} \qquad (\Delta_{\phi} - 4) \Delta_{\phi} - {m_{\mathsf{bulk}}}^2 = 0.$$

9 To make sense of the b.c., regulate at $z = \epsilon$:

$$\phi \epsilon^{-\Delta_{\phi}} = \phi_0$$
 — the source for $\mathcal O$

$$[\phi] = 0 \qquad \Rightarrow \qquad [\phi_0] = +\Delta_{\phi} \qquad ([x] = -1)$$

Thus
$$[\mathcal{O}] = 4 - \Delta_\phi \equiv \Delta_\mathcal{O}$$
 and $m_{\text{bulk}}^2 = \Delta_\mathcal{O}(\Delta_\mathcal{O} - 4)$

Expectation value of an operator

Find extremum of

$$S_{d+1} = \frac{1}{2} \int d^d x \sqrt{g} g^{mn} \partial_m \phi \, \partial_n \phi + \dots$$

with b.c. at $z = \epsilon \to 0$: $\phi \epsilon^{-\Delta_{\phi}} = \phi_0$. For small z:

$$\phi_{\text{sol}} = \alpha z^{\Delta_{\phi}} + \beta z^{\Delta_{\mathcal{O}}} \qquad (\Delta_{\phi} + \Delta_{\mathcal{O}} = d).$$

Calculate action (use e.o.m.):

$$S_{d+1} = \int_{x^d} \frac{\phi'\phi}{z^{d-1}} \bigg|_{z=\epsilon} = \int_{x^d} \phi_0^2 \Delta \epsilon^{2\Delta - d} + (d - 2\Delta)\beta \phi_0$$

where $\Delta \equiv \Delta_{\phi}$.

• Use holographic correspondence $W_d = S_{d+1}$:

$$\langle \mathcal{O} \rangle = \frac{\delta W_d}{\delta \phi_0} = \frac{\delta S_{d+1}}{\delta \phi_0} = (2\Delta_{\mathcal{O}} - d)\beta + \text{contact terms}$$

I.e., $\alpha \sim \phi_0$ — source, $\beta \sim \langle \mathcal{O} \rangle$ — expectation value (response).

Pair of CFTs

Proof Equation of motion has *two* solutions. Near z = 0:

$$\phi(z) \to \alpha z^{\Delta_-} + \beta z^{\Delta_+}$$

where

$$\Delta_{\pm} = d/2 \pm \sqrt{m_{\rm bulk}^2 + d^2/4}$$

- Since αz^{Δ_-} dominates as $z \to 0$, we have to set $\alpha = \phi_0$, thus $\Delta_{\phi_0} = \Delta_- < d/2$, and $\Delta_{\mathcal{O}} = \Delta_+ > d/2$.
- As observed by Breitenlohner-Freedman and Klebanov-Witten, for $-d^2/4 < m_{\text{bulk}}^2 < -d^2/4 + 1$, or $d/2 1 < \Delta_- < d/2$, there is an alternative CFT, with $\Delta_{\mathcal{O}} = \Delta_- < d/2$.

The alternative CFT, however, is not IR stable. Fine-tuning is necessary.

● There is a relevant deformation: \mathcal{O}^2 ($\Delta_{\mathcal{O}^2} < d$), which will "flow" to the original CFT.

Can see this in holography by adding $\frac{1}{2}c_0\mathcal{O}^2$ and tuning c_0 to obtain the alternative CFT (Witten, Gubser-Klebanov).

Alternative CFT

Proof Replace $\frac{1}{2}c_0\mathcal{O}^2$ by $\sigma\mathcal{O} + \sigma^2/2c_0$ and integral over σ .

Repeat the calcuation of the extremum of the action, but now apply b.c. $\phi = (\phi_0 + \sigma)\epsilon^{\Delta}$ at $z = \epsilon$.

Calculate action (use e.o.m.):

$$S_{d+1} = \int_{x^d} \frac{\phi' \phi}{z^{d-1}} \bigg|_{z=\epsilon} = \int_{x^d} (\phi_0 + \sigma)^2 \Delta \epsilon^{2\Delta - d} + (d - 2\Delta)\beta(\phi_0 + \sigma) + \frac{\sigma^2}{2c_0}$$

where $\Delta \equiv \Delta_{-}$.

• Integration over σ amounts to $\delta S/\delta \sigma = 0$. For a fine-tuned choice of c_0 (to cancel σ^2), this gives:

$$\beta = \phi_0 \; \frac{2\Delta}{(d-2\Delta)\epsilon^{d-2\Delta}}$$

while α remains unconstrained by the b.c. at $z = \epsilon$.

I.e., α and β exchange roles.

Below BF bound

- At $m_{\rm bulk}^2=-d^2/4$, $\Delta_-=\Delta_+=d/2$ and the two CFTs are the same. What happens below, $m_{\rm bulk}^2< m_{\rm BF}^2\equiv -d^2/4$?
- **•** Look at the e.o.m. again, write it as $(\psi = z^{\frac{d-1}{2}}\phi)$

$$-\psi'' + \frac{(4m_{\text{bulk}}^2 + d^2) - 1}{4z^2}\psi = q^2\psi$$

Same as QM in 2d with $V(r)=(4m_{\mathrm{bulk}}^2+d^2)/r^2$, $E=q^2$.

When $(4m_{
m bulk}^2+d^2)<0$, there is a bound state with energy $q^2\sim -\epsilon^{-2}\exp(-2\pi/\sqrt{m_{
m BF}^2-m_{
m bulk}^2})$ — tachyon.

BKT scaling again!

Presumably, (in a more complete gravity dual?) tachyon instability would be cured if an IR wall (cutoff) dynamically develops at

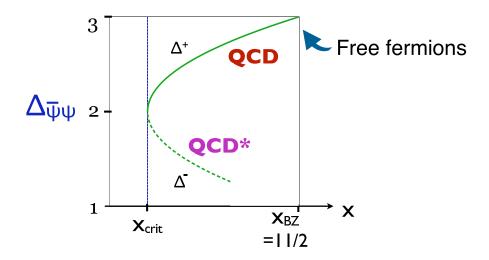
$$z_{
m IR} \sim \epsilon \exp(\pi/\sqrt{m_{
m BF}^2 - m_{
m bulk}^2}).$$

In search of QCD*

- What could this all tell us about QCD* (if it exists)?
- **Proof** Expect a pair of scalar operators with $\Delta_- + \Delta_+ = 4$.

A natural choice is $\bar{\psi}\psi$, which at x=11/2 has $\Delta_+=3$.

Thus in QCD* expect an operator with $\Delta_{-}=1$. Free scalar?



For example, we can try:

$$\mathcal{L}_{\text{model A}} = \mathcal{L}_{\text{QCD}} + \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{y}{\sqrt{2}} \bar{\psi} \psi \phi - \frac{\lambda}{24} \phi^4.$$

Model A (QCD* prototype)

$$a_s = \frac{g^2 N_c}{(4\pi)^2}, \quad a_y = \frac{y^2 N_c N_f}{(4\pi)^2}, \quad \hat{\lambda} = \frac{\lambda N_c N_f}{(4\pi)^2}.$$

$$\beta_{a_s} = -\frac{2}{3} \left[(11 - 2x)a_s^2 + (34 - 13x)a_s^3 \right],$$

$$\beta_{a_y} = -6a_s a_y + 2a_y^2,$$

$$\beta_{\hat{\lambda}} = -12a_y^2 + 4a_y \hat{\lambda}$$

$$a_{y*} = 3a_{s*}, \qquad \hat{\lambda} = 3a_{y*} = 9a_{s*}.$$

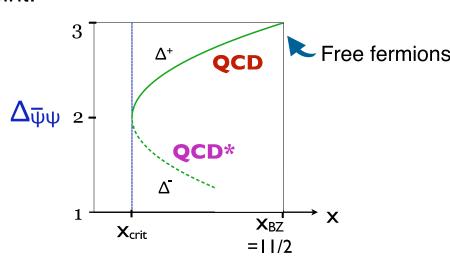
Thus, model A has a perturbative fixed point.
Moreover:

$$\Delta_{+} = \Delta[\bar{\psi}\psi]_{\text{BZ}} = 3 - 3a_{s*},$$

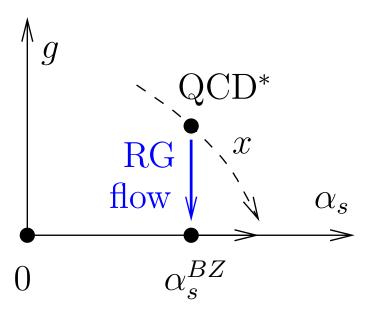
$$\Delta_{-} = \Delta[\phi]_{\text{model A}} = 1 + a_{y*}.$$

and, as expected,

$$\Delta_+ + \Delta_- = 4\,,$$



The relevance of the scalar mass



The relevant deformation for model A (QCD* prototype) is, naturally, $m^2\phi^2$ — scalar mass.

Beyond model A

- Model A does not have the full global symmetry of QCD $SU(N_f) \times SU(N_f)$.
 - A generalization of this model ($2N_f^2$ scalars) that does have the full symmetry does not have a perturbative fixed point. Perhaps, it does near $x_{\rm crit}$?
- **●** Some light can be shed using $2M^2$ scalars, with $M = N_f/k$, which has smaller symmetry, $SU(M) \times SU(M) \times SU(k)$.
 - ullet There is a perturbative fixed point for any k>1, but not for k=1.
 - Interestingly, the operator dimensions sum up to (for $k \gg 1$, $x \to 11/2$)

$$\Delta_{+} + \Delta_{-} = 4 + \frac{88}{625} \frac{n_{\phi}}{N_{f}^{2}} (11 - 2x),$$

where $n_{\phi} = 2M^2$.

In holography, this can be understood as "Casimir effect". Change of the b.c. changes the curvature radius R of the AdS metric. Thus

$$\Delta_{\pm} = \frac{d}{2} \pm \sqrt{\frac{d^2}{4} + m_{\rm bulk}^2 R_{\pm}^2}$$

if
$$R_+/R_- = 1 + O(n_\phi/N^2)$$
, then $\Delta_+ + \Delta_- = 4 + O(n_\phi/N_c^2)$.

Summary

- Fixed point annihilation is a ubiquitous mechanism of conformality loss.
- Very natural phenomenon in AdS/CFT holography.
- Implications for QCD:
 - Leads to BKT scaling below x_{\min} (below BF bound in holography). In the context of QCD, first found by Miransky *et al*, using SD approach. Although SD approximation is uncontrollable, the scaling is generic, as our RG treatment shows.
 - Important for lattice studies determining x_{\min} .
 - Predicts existence of QCD* conformal theory with one unstable (RG relevant) direction, which flows into BZ fixed point.
 - We could not find QCD* for $x \approx 11/2$. Perhaps, it exists only near x_{\min} ?

